



# **AC Inspection as Found**

**US Zinc** 3380 Fite Rd

Millington, Tennessee 38053

FolderID: 154138 FormID: 22258240



#### AC Inspection - Rev. 2

ML SHOP Location: 18014574 Serial Number:

Description:50 HP

| Hi-Speed Job Number: | 154138              |
|----------------------|---------------------|
| Manufacturer:        | Other               |
| Product Number:      | PE326T-50-4         |
| Serial Number:       | 18014574            |
| HP/kW:               | 50 (HP)             |
| RPM:                 | 1780 (RPM)          |
| Frame:               | 326T                |
| Voltage:             | 208-230/460         |
| Current:             | 58.3 (Amps)         |
| Phase:               | Three               |
| Hz:                  | 60 (Hz)             |
| Service Factor:      | 1.15                |
| Enclosure:           | TEFC                |
| # of Leads:          | 12                  |
| J-box Included:      | None                |
| Coupling/Sheave:     | None                |
| Date Received:       | 11/13/2024          |
| Bearing RTDs:        | No                  |
| Stator RTDs:         | No                  |
| Repair Stage:        | Teardown Inspection |
| Winding Type :       | Random Wound        |
| Bearing Type:        | Rolling Element     |

Priorities Found: **a** 2 - High

10 - Good

#### **Overall Condition**

1. Report Date 11/13/2024

2. Nameplate Picture P2



Photos of all six sides of the machine.

РЗ













4. Describe the Overall Condition of the Equipment as Received

Bearings and grease looked clean.... minimal run time since last recondition

| In | Initial Mechanical/Electrical                                            |                                 |              |
|----|--------------------------------------------------------------------------|---------------------------------|--------------|
|    | 5.                                                                       | Does Shaft Turn Freely?         | (Y) Yes      |
|    | 6. Does the shaft require T.I.R in Lathe to identify additional repairs? |                                 |              |
|    | 7.                                                                       | Does Shaft Have Visible Damage? | (No) No      |
|    | 8.                                                                       | Assembled Shaft Runout          | 0.002 Inches |
|    | 9.                                                                       | Assembled Shaft End Play        | 0.001 inches |
|    | 10.                                                                      | Air Gap Variation <10%          |              |
|    | 11.                                                                      | Lead Condition                  | (P) Pass     |
|    | 12.                                                                      | Lead Length                     | 10 Inches    |

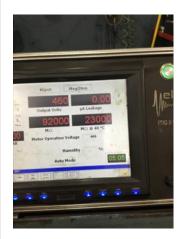
| 13. Does it have Lugs?, If so what is the Stud Size? (No) No |     |                 |          |     |
|--------------------------------------------------------------|-----|-----------------|----------|-----|
|                                                              | 14. | Lead Numbers    | 1-12     |     |
|                                                              | 15. | Frame Condition | Good     |     |
|                                                              | 16. | Fan Condition   | (P) Pass | P19 |

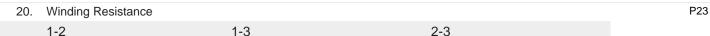
Snap ring



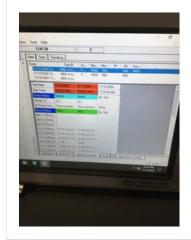
17. Heater Quantity, Ratings

Quantity Volts/Watts Pass/Fail


None


18. Broken or Missing Components none apparent

### **Initial Electrical Inspection**


0

19. Insulation Resistance/Megger 230000 Megohms P22






.143 .144 .143





21. Perform Surge Test(P) PassP24



22. Number of Stator Slots 48

23. Stator Condition acceptable P26




24. Stator Thermistors/Ohms none

25. Stator Overloads/Ohms none

**Mechanical Inspection** 

0





| 28. | Drive End Bearing Qty.                                  | 1                          |     |
|-----|---------------------------------------------------------|----------------------------|-----|
| 29. | Drive End Bearing Type                                  | (Ball) Ball Bearing        |     |
| 30. | Drive End Lubrication Type                              | (Grease) Grease Lubricated |     |
| 31. | Drive End Bearing Insulation or Grounding Device?       | none                       |     |
| 32. | Drive End Wavy Washer/Snap-Ring Other Retention Device? | none                       |     |
| 33. | Drive End Bearing Condition                             | good                       | P36 |







| 34. | Opposite Drive End Bearing Brand   | SKF        |     |
|-----|------------------------------------|------------|-----|
| 35. | Opposite Drive End Bearing Number- | 6312 zz c3 | P38 |



|     | 1                          | 36. Opposite Drive End Bearing Qty.                                  |
|-----|----------------------------|----------------------------------------------------------------------|
|     | (Ball) Ball Bearing        | 37. Opposite Drive End Bearing Type                                  |
|     | (Grease) Grease Lubricated | 38. Opposite Drive End Lubrication Type                              |
|     | none                       | 39. Opposite Drive End Bearing Insulation or Grounding Device?       |
|     | snap ring                  | 40. Opposite Drive End Wavy Washer/Snap-Ring Other Retention Device? |
| P44 | good                       | 41. Opposite Drive End Bearing Condition                             |





| 42.   | Drive End Seal          | yes                                                 |
|-------|-------------------------|-----------------------------------------------------|
| 43.   | Opposite Drive End Seal | slinger                                             |
| Rotor | Inspection              | io i                                                |
| 44.   | Rotor Type/Material     | (Squirrel Aluminum) Squirrel Cage Aluminum Die Cast |
| 45.   | Growler Test            | (Pass) Pass                                         |
| 46.   | Number of Rotor Bars    | 44                                                  |

47. Rotor Condition good P58



48. List the Parts needed for the Repair Below (2) 6312 bearings

49. Signature of Technician that Disassembled Motor

**Brian Goines** 

Di Sais

| Mechanical Fits- Rotor |                                         |             |                            |  |
|------------------------|-----------------------------------------|-------------|----------------------------|--|
| 50.                    | Shaft Runout                            |             |                            |  |
| 51.                    | Rotor Runout                            |             |                            |  |
|                        | Drive End Bearing Fit                   | Rotor Body  | Opposite Drive End Bearing |  |
|                        |                                         |             |                            |  |
| 52.                    | Coupling Fit Closest to Bearing Housing |             |                            |  |
|                        | 0 Degrees                               | 90 Degrees  | 120 Degrees                |  |
|                        | 2.124                                   | 2.124       | 2.124                      |  |
| 53.                    | Coupling Fit Closest to the end of      | f the Shaft |                            |  |
|                        | 0 Degrees                               | 60 Degrees  | 120 Degrees                |  |
|                        | 2.124                                   | 2.124       | 2.124                      |  |

54. Drive End Bearing Shaft Fit

0 Degrees

60 Degrees 120 Degrees

2.3623 2.3623 2.3621

60 Degrees

60mm = 2.3622 Pressfit tolerance is from 2.3623 to 2.3628





55. Drive End Bearing Shaft Fit Condition

0 Degrees

(P) Pass

P65

P67

56. Opposite Drive End Bearing Shaft Fit

120 Degrees

2.3625 2.3624

2.3625





57. Opposite Drive End Bearing Shaft Fit Condition

(P) Pass

■ 58. Shaft Air Seal Fits

Drive End Air Seal Opposite Drive End Air Seal

## **Mechanical Fits- Bearing Housings**



0 Degrees 60 Degrees 120 Degrees

5.1205 5.1204 5.1205

130mm = 5.1181 Tolerance is from 5.1181 to 5.1191





60. Drive End - Endbell Bearing Fit Condition

(F) Fail

0 Degrees

5.1213 5.1214

5.1214

130mm = 5.1181 Tolerance is from 5.1181 to 5.1191

The ODE endbell has been repaired in the past. See photos

60 Degrees





120 Degrees







62. Opposite Drive End - Endbell Bearing Fit Condition

(F) Fail

63. Bearing Cap Condition

Drive End Bearing Cap

Opposite Drive End Bearing Cap

| <b>6</b> 4. | End Bell Air Seal Fits             |                             |                |
|-------------|------------------------------------|-----------------------------|----------------|
|             | Drive End Air Seal                 | Opposite Drive End Air Seal |                |
|             |                                    |                             |                |
| 65.         | 65. List Machine Work Needed Below |                             |                |
|             | Both endbells need to be bored an  | d bushed                    |                |
| 66.         | Technician                         |                             | Roger Ventrini |
|             | R                                  |                             |                |
| Root        | Cause of Failure                   |                             |                |
| 67.         | Failure locations                  |                             |                |
| 68.         | Root cause of failure              |                             |                |