

AC Inspection as Found UNITED SOLUTIONS 1052 INDUSTRIAL PARK RD

Millington, Tn 38053 901-873-5300

Hi-Speed Industrial Service

FolderID: 153300 FormID: 21235398

7030 Ryburn Dr

SARDIS, MS 38666

AC Inspection - Rev. 2

Location: Motor Shop

Serial Number:	

Hi-Speed Job Number:	153300
Manufacturer:	Other
Product Number:	WK 315M/4-550T
Spec/ID #:	7215392
HP/kW:	400 (HP)
RPM:	1780 (RPM)
Frame:	550T
Voltage:	460
Current:	450 (Amps)
Phase:	Three
Hz:	60 (Hz)
# of Leads:	12
J-box Included:	Complete
Coupling/Sheave:	Coupling
Date Received:	07/25/2024
Bearing RTDs:	No
Stator RTDs:	No
Repair Stage:	Teardown Inspection
Rewind:	Yes
Shaft Machined Fit Repairs Required:	No
Bearing Housing Machined Fit Repairs Required:	No
Heaters:	No
Winding Type :	Random Wound
Bearing Type:	Rolling Element

Priorities Found: **a 3 - High**

8 - Good

Overall Condition

0

Report Date

08/07/2024

3. Photos of all six sides of the machine.

РЗ

Describe the Overall Condition of the Equipment as Received
 Stator windings blown in center of iron. Requires extensive repair work or restack. Rotor has several rotor bars broken and requires extensive repair or replacement.

5. Distance from the end of the shaft to the Coupling/Sheave

-0.25 inches

P5

6. Report Date [COPY]

Ini	Initial Mechanical/Electrical		ō
	7.	Does Shaft Turn Freely?	(Y) Yes
	8.	Does the shaft require T.I.R in Lathe to identify additional repairs?	(No) No
	9.	Does Shaft Have Visible Damage?	(No) No
	10.	Assembled Shaft Runout	0.001 Inches
	11.	Assembled Shaft End Play	0.001 inches

12.	Air Gap Variation <10%	No Provisions for Measurement
13.	Lead Condition	(P) Pass
14.	Lead Length	24 Inches
15.	Does it have Lugs?, If so what is the Stud Size?	(No) No
16.	Lead Numbers	P16

17.	Frame Condition	Pass
18.	Fan Condition	(N) NA
19.	Broken or Missing Components	P22

19. Broken or Missing Components

Coupling set screw

Initial Electrical Inspection					Ō	
	20.	Insulation Resistance/Megger			0 Megohms	
	21.	Winding Resistance				
		1-2	1-3	2-3		
		0	0	0		
	22.	Perform Surge Test			(F) Fail	
	23.	Number of Stator Slots			60	

Additionally stator will require extensive iron work or restock!!!

25.	Stator Thermistors/Ohms	186
26.	Stator Overloads/Ohms	N/A

Mechanical Inspection27. Drive End Bearing BrandFAGP30

28. Drive End Bearing Number-	6317 C3
29. Drive End Bearing Qty.	1
30. Drive End Bearing Type	(Ball) Ball Bearing
31. Drive End Lubrication Type	(Grease) Grease Lubricated
32. Drive End Bearing Insulation or Grounding Device?	None

34.	Drive End Bearing Condition	Normal wear	
35.	Opposite Drive End Bearing Brand	FAG	P38

36.	Opposite Drive End Bearing Number-	6317 c3	
37.	Opposite Drive End Bearing Qty.	1	
38.	Opposite Drive End Bearing Type	(Ball) Ball Bearing	
39.	Opposite Drive End Lubrication Type	(Grease) Grease Lubricated	
40.	Opposite Drive End Bearing Insulation or Grounding Device?	None	
44	Opposite Drive End Work Weeker/Spen Bing Other Retention Device?		D44

P45

42. Opposite Drive End Bearing Condition Normal wear

43.	Drive End Seal	va 85
44.	Opposite Drive End Seal	va 85
Rotor I	Inspection	Ō
45.	Rotor Type/Material	(Copper Barred) Copper Barred Rotor
46.	Growler Test	(Pass) Pass
47.	Number of Rotor Bars	48

Several rotor bars broken.

- 49. List the Parts needed for the Repair Below
 - 2- Va 85
 - 2-6317 c3

50. Signature of Technician that Disassembled Motor

Motor Brandon Woodard

Mechanical Fits- Rotor				ō
51.	Shaft Runout		0.001 inches	
52.	Rotor Runout			
	Drive End Bearing Fit	Rotor Body	Opposite Drive End Bearing	
	0.001	0.001	0.001	
53.	Coupling Fit Closest to Bearing H	lousing		
	0 Degrees	90 Degrees	120 Degrees	
	3.125	3.125	3.125	
54.	Coupling Fit Closest to the end of	f the Shaft		
	0 Degrees	60 Degrees	120 Degrees	
	3.125	3.125	3.125	
55.	Drive End Bearing Shaft Fit			P66
	0 Degrees	60 Degrees	120 Degrees	
	3.3467	3.3467	3.3467	
-	Tolerance is 3.3466-4.3472			

56. Drive End Bearing Shaft Fit Condition

(P) Pass

57. Opposite Drive End Bearing Shaft Fit

0 Degrees
60 Degrees
120 Degrees
3.3468
3.3468
3.3468

Tolerance is 3.3466-4.3472

58. Opposite Drive End Bearing Shaft Fit Condition

(P) Pass

59.	Shaft Air Seal Fits	
	Drive End Air Seal	Opposite Drive End Air Seal
	Pass	Pass

Mecha	nical Fits- Bearing Housings
60.	Drive End - Endbell Bearing Fit

0

P71

0 Degrees 60 Degrees 120 Degrees

7.0872 7.0872 7.0872

Tolerance is 7.0866-7.0876

		Drive End - Endbell Bearing Fit Condition	(P) Pass
		Opposite Drive End - Endbell Bearing Fit	

0 Degrees 60 Degrees 120 Degrees 7.0871 7.0871 7.0871

Tolerance is 7.0866-7.0876

63.	Opposite Drive End - Endbell Bearing Fit Condition		(P) Pass
64.	Bearing Cap Condition		
	Drive End Bearing Cap	Opposite Drive End Bearing Cap	
	Pass	Pass	
65.	End Bell Air Seal Fits		
	Drive End Air Seal	Opposite Drive End Air Seal	
	Pass	Pass	
66.	List Machine Work Needed Belov	V	
	None		
67.	Technician		Brandon Woodard

Root Cause of Failure

68. Failure locations

69. Root cause of failure