

MOTOR SHOP LR

Hi-Speed Industrial Service 7030 Ryburn Dr Millington, Tn 38053 901-873-5300

> FolderID: 103876 FormID: 22612547

AC Inspection as Found Beasly Flooring (12083) 485 HWY 9 SPUR

MELBOURNE, AR 72556

Location:

AC Inspection - Rev. 2

Serial Number: 894C-664

Description: 100HP BALDOR

Hi-Speed Job Number:	103876
Manufacturer:	Baldor
Product Number:	CAT: ECP4400T-4
Spec/ID #:	1GE32X20
Serial Number:	894C-664
HP/kW:	100 (HP)
RPM:	1780 (RPM)
Frame:	405T
Voltage:	460
Current:	114 (Amps)
Phase:	Three
Hz:	60 (Hz)
Service Factor:	1.15
Enclosure:	TEFC
# of Leads:	3
J-box Included:	Complete
Coupling/Sheave:	None
Date Received:	12/20/2024
Bearing RTDs:	No
Stator RTDs:	No
Repair Stage:	Final
Rewind:	No
Shaft Machined Fit Repairs Required:	No
Heaters:	No
Winding Type :	Random Wound
Bearing Type:	Rolling Element

Priorities Found: 1 - High

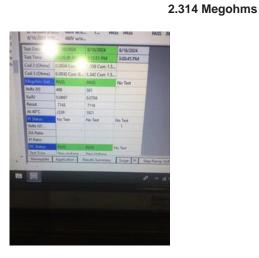
12 - Good

Overall Condition

Report Date

12/18/2024

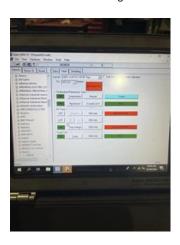
3. Photos of all six sides of the machine.


4	Describe the Overall Condition of the Equipment of Described
4.	Describe the Overall Condition of the Equipment as Received

	٠.	Describe the everal condition of the Equipment de Neserved	
In	itial I	Mechanical/Electrical	
	5.	Does Shaft Turn Freely?	(Y) Yes
	6.	Does the shaft require T.I.R in Lathe to identify additional repairs?	(No) No
	7.	Does Shaft Have Visible Damage?	(No) No
	8.	Assembled Shaft Runout	0.003 Inches
	9.	Assembled Shaft End Play	0 inches
	10.	Air Gap Variation <10%	
	11.	Lead Condition	(P) Pass
	12.	Lead Length	11 Inches
	13.	Does it have Lugs?, If so what is the Stud Size?	(No) No
	14.	Lead Numbers	1-3
	15.	Frame Condition	pass
	16.	Fan Condition	(P) Pass
	17.	Broken or Missing Components	none
In	itial E	Electrical Inspection	io

Initial Electrical Inspection

18. Insulation Resistance/Megger


Р8

1-2 1-3

.0620 .0622 .0621

20. Perform Surge Test

Before baking

2-3

After baking

21. Number of Stator Slots 60

22. Stator Condition pass

23. Stator Thermistors/Ohms

24. Stator Overloads/Ohms

Mechanical Inspection

P57

25. Drive End Bearing Brand

26.	Drive End Bearing Number-	6316	
27.	Drive End Bearing Qty.	1	
28.	Drive End Bearing Type	(Ball) Ball Bearing	
29.	Drive End Lubrication Type	(Grease) Grease Lubricated	
30.	Drive End Bearing Insulation or Grounding Device?		
31.	Drive End Wavy Washer/Snap-Ring Other Retention Device?		
-	Spanner nut, star washer		
32.	Drive End Bearing Condition	replace	
-	Metal fatigue		
33.	Opposite Drive End Bearing Brand	koyo	P92

34.	Opposite Drive End Bearing Number-	6313	
35.	Opposite Drive End Bearing Qty.	1	
36.	Opposite Drive End Bearing Type	(Ball) Ball Bearing	
37.	Opposite Drive End Lubrication Type	(Grease) Grease Lubricated	
38.	Opposite Drive End Bearing Insulation or Grounding Device?		
39.	Opposite Drive End Wavy Washer/Snap-Ring Other Retention Device?	wavy washer	
40.	Opposite Drive End Bearing Condition	replace	
-	Metal fatigue		
4 1.	Drive End Seal	Dust seal	
4 2.	Opposite Drive End Seal	Dust seal	
Rotor	Inspection		

43. Rotor Type/Material

(Squirrel Aluminum) Squirrel Cage Aluminum Die Cast

44.	Growler Test		(Pass) Pass	
45.	Number of Rotor Bars		50	
46.	Rotor Condition		pass	
47.	List the Parts needed for the Rep	air Below		
	6316 & 6313 2Z/C3 bearings			
48.	Signature of Technician that Disa	ssembled Motor	Cody McMillan	
Mecha	Co sign: TRH			
49.			0.003 inches	
49. 50.			0.003 inches	
50.		Datas Dadu	Opposite Drive Ford Bearing	
	Drive End Bearing Fit	Rotor Body	Opposite Drive End Bearing	
51.	Coupling Fit Closest to Bearing H	lousing		
31.	0 Degrees	90 Degrees	120 Degrees	
	0 Degrees	90 Degrees	120 Degrees	
52.	Coupling Fit Closest to the end of	the Shaft		
02.	0 Degrees	60 Degrees	120 Degrees	
	0 D0g1000	00 D0g1000	120 Dog1000	
53.	Drive End Bearing Shaft Fit			
	0 Degrees	60 Degrees	120 Degrees	
	3.1502	3.1502	3.1502	
5 4.	Drive End Bearing Shaft Fit Cond		(P) Pass	
55.	-		. ,	
	0 Degrees	60 Degrees	120 Degrees	
	2.5596	2.5594	2.5594	
56.	Opposite Drive End Bearing Shaf	t Fit Condition	(P) Pass	
57.			,	
	Drive End Air Seal	Opposite Drive End Air Seal		

Mechanical Fits- Bearing Housings

0

Hi-Speed Industrial Service disclaims all warranties, both express and implied, relating to the information, reports, opinions and analysis disclosed to the Customer by Hi-Speed. Hi-Speed shall not be liable for any errors or omissions, or any losses, injury or damages arising from the use of such information, reports, opinions and analysis by the Customer.

58. Drive End - Endbell Bearing Fit P2

0 Degrees 60 Degrees 120 Degrees

Fail

Excessive Pitting, recommend sleeving. Verified by machinist.

59. Drive End - Endbell Bearing Fit Condition
(F) Fail
P15

Excessive pitting. Verified by machinist.

60.	Opposite Drive End - Endbell Bea	ring Fit		
	0 Degrees	60 Degrees	120 Degrees	
	5.5122	5.512	5.512	
61.	Opposite Drive End - Endbell Bea	ring Fit Condition	(P) Pass	
62.	Bearing Cap Condition			
	Drive End Bearing Cap	Opposite Drive End Bearing Cap		
	pass	pass		
63.	End Bell Air Seal Fits			
	Drive End Air Seal	Opposite Drive End Air Seal		
64.	List Machine Work Needed Below			
	Sleeve D.E housing fit			
65.	Technician		Terrence Holland	

T-1-10

Co witness: CM **Root Cause of Failure** 66. Failure locations Bearings & bearing grease. D.E housing fit has excessive pitting. 67. Root cause of failure Water contaminated grease caused premature bearing failure **Dynamic Balance Report** 68. Rotor Weight and Balance Grade Rotor Weight Balance Grade 69. Initial Balance Readings Drive End Opposite Drive End 70. Final Balance Readings Drive End Opposite Drive End 71. Technician Mechanical Fits- Bearing Housings - Post Repair 72. Drive End - Endbell Bearing Fit Post Repair 120 Degrees 0 Degrees 60 Degrees 73. Opposite Drive End - Endbell Bearing Fit Post Repair 0 Degrees 60 Degrees 120 Degrees 74. Bearing Cap Condition Post Repair Drive End Bearing Cap Opposite Drive End Bearing Cap 75. End Bell Air Seal Fits Post Repair Drive End Air Seal Opposite Drive End Air Seal 76. End Bell Repair Sign-off **Assembly** 77. QC Check All Parts for Cleanliness Prior to Assembly 78. Photograph All Major Components prior to assembly 79. Final Insulation Resistance Test 80. Assembled Shaft Endplay 81. Assembled Shaft Runout 82. Test Run Voltage Volts Volts Volts

83.	Test Run Amperage		
	Amps	Amps	Amps
84.	Drive End Vibration Readings -	Inches Per Second	
	Horizontal	Vertical	Axial
85.	85. Opposite Drive End Vibration Readings - Inches Per Second		
	Horizontal	Vertical	Axial
86.	6. Ambient Temperature - Fahrenheit		
87.	7. Drive End Bearing Temps - Fahrenheit		
	5 Minutes	10 Minutes	15 Minutes
88.	Opposite Drive End Bearing Te	mps - Fahrenheit	
	5 Minutes	10 Minutes	15 Minutes
89.	Document Final Condition with	Pictures after paint	
90.	Final Pics and QC Review		