

0

DC Repair Report Reynolds Metals company

1333 highway 270 Malvern, AR 72104

DC Repair Report Rev. 2

LITTLE ROCK MOTOR SHOP Location:

Job Number: 103617

Serial Number: CR-1-473CR

Description: 100HP GENERAL ELECTRIC

Hi-Speed Job Number:	103617
Manufacturer:	US Motors/Nidec
Product Number :	M: 5CD203PA007A808
Serial Number:	CR-1-473CR
HP/KW:	100 (HP)
RPM:	17502100
Armature Voltage:	500 (Volts)
Armature Current:	161 (Amps)
Field Voltage:	240 (Volts)
Field Current :	3.7 (Amps)
J-Box Included:	No
Date Received:	10/10/2024
Bearing RTDS:	No
Winding RTDS:	No
Mounting Orientation :	Horizontal

Priorities Found: **2 - High**

8 - Good

Overall Condition

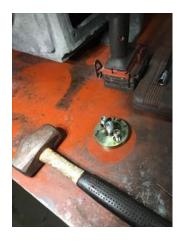
Describe the Overall Condition of the Equipment as Received Serviceable

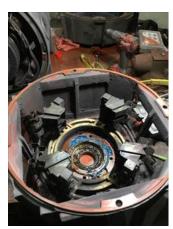
P17 2. Nameplate Picture

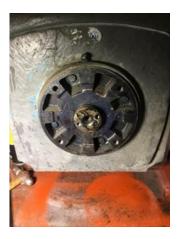
Hi-Speed Industrial Service disclaims all warranties, both express and implied, relating to the information, reports, opinions and analysis disclosed to the Customer by Hi-Speed. Hi-Speed shall not be liable for any errors or omissions, or any losses, injury or damages arising from the use of such information, reports, opinions and analysis by the Customer.

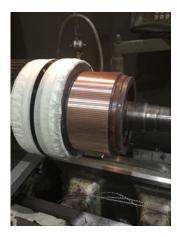
Printed on 10/16/2024 Powered by INSPECTALL Page 1 of 21

FolderID: 103617 FormID: 21895446









Hi-Speed Industrial Service disclaims all warranties, both express and implied, relating to the information, reports, opinions and analysis disclosed to the Customer by Hi-Speed. Hi-Speed shall not be liable for any errors or omissions, or any losses, injury or damages arising from the use of such information, reports, opinions and analysis by the Customer.

Turned and polished com. Gary

Installed Agis ring. Gary

3. Distance From the End of the Shaft to the end of the Face of the Sheave/Coupling

0

P31

Ini	Initial Mechanical/Electrical				
	4.	Does the Shaft Turn Freely?	(N) No		
	5.	Does Shaft Have Visible Damage?	(No) No		
	6. Assembled Shaft Runout Unable to perform due to shaft not rotating smoothly		Inches		
1					
	7. Assembled Shaft End Play		0 Inches		

8.	Air Gap Variation <10%			
9.	Lead Condition			(P) Pass
10.	Lead Length			
11.	Frame Condition			(P) Pass
12.	Fan Condition			
13.	Brush Information			P87
	Brush Number	Quantity	Condition	
	T563A164451ABP	8	some wear	
	Two different kinds of brushes in	motor		

Brush Holder Condition - Verify proper gap to Commutator

pass

Incoming Electrical Test

General Condition of the Armature/Commutator

0

P6

Dirty. Comm has some wear.

17. Field Circuit Insulation Resistance to Ground

Megohms

P30

18. Interpole Circuit Insulation Resistance to Ground

477 Gigohms

P46

19. Total Field Ohms P60

20. Field Ohms

Between F1/F2 Between F3/F4

21. MegOhms between Fields and Series

22.	Series Drop Test 1&2		
	Series 1	Series 2	
	17	17	
23.	Series Drop Test 3&4		
	Series 3	Series 4	
	17	18	
24.	Field Drop Test Fields 1&2		
	Total AC Voltage	Field #1	Field #2
	120	0.702	0.782
25.	Field Drop Test Fields 3&4		
	Field #3	Fleld #4	
	0.286	0.783	
26.	Field Drop Test Fields 5&6		
	Field #5	Fleld #6	
27.	Field Drop Test Fields 7&8		
	Field #7	Fleld #8	

P83

28.	Interpole Drop Test 1&2			
	Total AC Voltage	Interpole #1	Interpole #2	
		17	17	
29.	Interpole Drop Test 3&4			
	Interpole #3	Interpole #4		
	17	18		
30.	Interpole Drop Test 5&6			
	Interpole #5	Interpole #6		
31.	Interpole Drop Test 7&8			
	Interpole #7	Interpole #8		
32.	Armature Number of Bars - Bar t	o Bar Test		
	Number of Bars	Bar to Bar Test		
		pass		
Mecha	nical Inspection			O
33.	Shaft Runout Drive End		0.002 inches	
34.	Shaft Runout Armature			
	Drive End Bearing Journal	Armature Core	ODE Bearing Journal	
35.	Drive End Bearing Number		6214	
36.	Drive End Bearing Quantity		1	
37.	Drive End Bearing Type		(Ball) Ball Bearing	
38.	Drive End Lubrication Type		(Grease) Grease Lubricated	
39.	Drive End Bearing Insulation or	Grounding Device?		
-	None			
40.	Drive End Wavy Washer/Snap-F	Ring Other Retention Device?	snap ring	
41.	Drive End Bearing Condition			P79

42.	Opposite Drive End Bearing Number	6212	
	•		
43.	Opposite Drive End Bearing Quantity	1	
44.	Opposite Drive End Rearing Type	(Ball) Ball Bearing	
44.	Opposite Drive End Bearing Type	(Dail) Dail Dearling	
45.	Opposite Drive End Lubrication Type	(Grease) Grease Lubricated	
+5.	Opposite Drive End Eddication Type	(Orease) Orease Eubricated	
46.	Opposite Drive End Bearing Insulation or Grounding Device?		
40.	Opposite Drive Life Bearing insulation of Grounding Device:		
	None		
_	None		

49. Signature of Technician who Performed Teardown

Terrence Holland

0

50. List Parts Needed Prior to Reassembly

Aegis ring, insulated 6212 bearing, 8 sets of brushes.

Mechanical Fits - Armature

51. Coupling Fit Closest to Bearing Housing

0 Degrees 60 degrees 120 degrees

52. Coupling Fit Closest to the End of the Shaft

0 Degrees 60 degrees 120 degrees

53. Drive End Bearing Shaft Fit

0 Degrees 60 Degrees 120 Degrees

2.7556 2.7555 2.7555

Bearing slid off by hand.

▶ 54. Drive End Bearing Shaft Fit Condition (F) Fail

55. Opposite Drive End Bearing Shaft Fit

0 Degrees 60 Degrees 120 Degrees

2.3627 2.3627 2.3628

56. Opposite Drive End Bearing Shaft Fit Condition(P) Pass

57. Shaft Air Seal Fits

Drive End Air Seal Opposite Drive End Air Seal

Mechanical Fits- Bearing Housings

58. Drive End - End Bell Bearing Fit

0 Degrees 60 Degrees 120 Degrees

2.7563 2.7565 2.7564

59. Drive End - Endbell Bearing Fit Condition
(P) Pass

60.	Opposite Drive End - End Bell Be	earing Fit	
	0 Degrees	60 Degrees	120 Degrees
	2.3628	2.3627	2.3628
61.	Opposite Drive End - Endbell Bea	aring Fit Condition	(P) Pass
62.	Bearing Cap Condition		

Opposite Drive End

pass

Drive End

63. End Bell Air Seal Fits Drive End Air Seal Opposite Drive End Air Seal

64. List any Machine work Needed Below

repair DE bearing shaft fit

1) Repair DE. bearing shaft fit.

2) Install aegis ring on drive end housing

65. Signature of Technician Performing Measurements

Terrence Holland

Root Cause of Failure

66. Failure Locations

Motor fields show disproportionate ohm readings during drop test. DE shaft bearing journal is too small. Both bearings show signs of electrical discharge damage.

67.				
	Root Cause of Failure			
	Electrical failure of fields.			
Comm	utator Data			
68.	Total Copper Segment Length		inches	
69.	Number of Bars		159	
70.	Number of Wires Per Copper Bar	and Size		
	Number of Wires per Bar	Wire Size		
71.	Equalizers per Copper Bar and E	qualizer Wire Size		
	Equalizers per Bar	Wire Size		
72.	Document Commutator Diameter	, Minimum and Max		
	Current Comm Diameter	Minimum Comm Diameter	Maximum Comm Diameter	
73.	Commutator Shaft Diameter			
	Front Shaft Diameter	Back Shaft Diameter		
74.	Commutator Type			
75.	Commutator Bore			
76.	Signature of Technician Recordin	g Data		
Dynam	ic Balance Report		Ō	
77.	Rotor Weight and Balance Grade			
	Rotor Weight	Balance Grade		
78.	Initial Balance Readings			
	Drive End Readings	Opposite Drive End Readings		
79.	Final Balance Readings			Ρ
	Drive End Readings	Opposite Drive End Readings		

80. Signature of the Ba	lance Technician	Terrence Holland
/	-/M-f	

st A	rmature Rewind Testing		
31.	Post Rewind Armature Insulat	ion Resistance to Ground	Megohms
82.		asure the Insulation Resistance to Ground	Megohms
83.	Post Rewind Armature Number	er of Bars - Bar to Bar Test	J
	Number of Bars	Bar to Bar Test	
84.	Post Rewind Field Circuit Insu	lation Resistance to Ground	Megohms
85.	Post Rewind Interpole Circuit	Insulation Resistance to Ground	Megohms
86.	Post Rewind Field Drop Test	Fields 1&2	
	Total AC Voltage	Field #1	Field #2
87.	Post Rewind Field Drop Test		
	Field #3	Fleld #4	
00	Dest Dessired ET LLD TO 1	5:-I-I- 500	
88.	Post Rewind Field Drop Test		
	Field #5	Fleld #6	
89.	Post Rewind Field Drop Test	Fields 7&8	
00.	Field #7	Fleld #8	
	Tiola III	i iola iio	
90.	Post Rewind Interpole Drop T	est 1&2	
	Total AC Voltage	Interpole #1	Interpole #2
91.	Post Rewind Interpole Drop T	est 3&4	
	Interpole #3	Interpole #4	
92.	Post Rewind Interpole Drop T		
	Interpole #5	Interpole #6	
00	Deat Devided I. C. D. T.	4.700	
93.	Post Rewind Interpole Drop T		
	Interpole #7	Interpole #8	
ot M	achanical Panair		der.
94.	echanical Repair Post Repair Coupling Fit Clos	est to Rearing Housing	Ō
J+.	0 Degrees	60 degrees	120 degrees
	o Degrees	oo degrees	120 degices
95.	Post Repair Coupling Fit Clos	est to the End of the Shaft	
J	0 Degrees	60 degrees	120 degrees
		00 0001000	120 4091000

97. Post Repair Drive End Bearing Shaft Fit Condition			(P) Pass	P38	
	2.7566	2.7565	2.7565		
	0 Degrees 60 Degrees		120 Degrees		
96.	Post Repair Drive End Bearing Shaft Fit				

98.	Post Repair Drive End Opposite I	Drive End Bearing Shaft Fit		
	0 Degrees	60 Degrees	120 Degrees	
99.	Post Repair Drive End Opposite I	Orive End Bearing Shaft Fit Condition		
100.	Post Repair Drive End - End Bell	Bearing Fit		
	0 Degrees	60 Degrees	120 Degrees	
101.	Post Repair Drive End - Endbell E	Bearing Fit Condition		
102.	Post Repair Opposite Drive End -	End Bell Bearing Fit		
	0 Degrees	60 Degrees	120 Degrees	
103.	Post Repair Opposite Drive End -	Endbell Bearing Fit Condition		
104.	Post Repair Bearing Cap Condition	on		
	Drive End	Opposite Drive End		
105.	Post Repair End Bell Air Seal Fits	3		
	Drive End Air Seal	Opposite Drive End Air Seal		
106.	Signature of Tech Performing Me	chanical Repairs	Gary	

Assembly

107. Take Pictures of all Major Components Prior to Reassembly

P7

108. Verify Brush Box Holders Have the Proper Clearance, and Brushes
 have been Seated Properly

(P) Pass

109. Assembled Shaft End Play and Runout

Shaft Endplay Shaft Runout

0 .002

110. Perform No-Load Test Run, Record Armature Voltage and Current

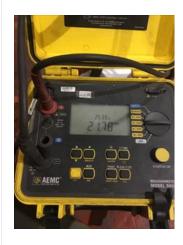
Voltage Current

Meg armature and inter poles

Fields

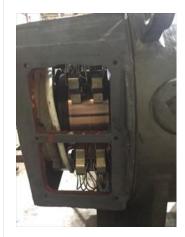
P43

Series



Arm& Inter poles @ 2500

Series @ 2500



Fields @ 2500

rielas @ 2500				
111.	Perform No-Load Test Run, Record Field Voltage and Current			
	Voltage	Current		
-	See above			
112.	Document Vibration Readings Drive End			
	Horizontal	Vertical	Axial	
113.	3. Document Vibration Readings Opposite Drive End			
	Horizontal	Vertical	Axial	
114.	Perform Full-Load Test Run, Record Armature Voltage and Current			P78
	Voltage	Current		

115. Perform Full-Load Test Run, Record Field Voltage and Current

Voltage Current

See above:

116. Document Vibration Readings Under Full Load Drive End

Horizontal Vertical Axial

117. Document Vibration Readings Under Full Load Opposite Drive End

Horizontal Vertical Axial

118. Ambient Temperature Fahrenheit

119. Drive End Bearing Temps Under Full Load

5 Minutes 10 Minutes

120. Opposite Drive End Bearing Temps Under Full Load

5 Minutes 10 Minutes 15 Minutes

121. Final Test Run Sign-Off

Terrence Holland

P113

Co sign: RRW

15 Minutes

122. Document Final Condition With Pictures

P116

123. Final QC Sign-Off

Terrence Holland

I Helle