

Hi-Speed Industrial Service 7030 Ryburn Dr Millington, Tn 38053 901-873-5300

> FolderID: 102739 FormID: 19984342

AC Inspection as Found

acme brick 22145 US- 67 Malvern, AR 72104

Serial Number:

AC Inspection - Rev. 2

MOTOR SHOP LR Location:

Description: 150HP BALDOR 1190RPM

A2104132051

Hi-Speed Job Number:	102739
Manufacturer:	Baldor
Product Number:	CAT: ECR91506TR-4
Spec/ID #:	P44G1811
Serial Number:	A2104132051
HP/kW:	150 (HP)
RPM:	1190 (RPM)
Frame:	447T
Voltage:	460
Current:	180 (Amps)
Phase:	Three
Hz:	60 (Hz)
Service Factor:	1.15
Enclosure:	TEFC
# of Leads:	6
J-box Included:	None
Coupling/Sheave:	None
Date Received:	04/09/2024
Bearing RTDs:	No
Stator RTDs:	No
Repair Stage:	Final
Rewind:	Yes
Shaft Machined Fit Repairs Required:	No
Bearing Housing Machined Fit Repairs Required:	Yes
Heaters:	No
Winding Type :	Random Wound
Bearing Type:	Rolling Element

Priorities Found: 6 - High

4 - Good

Overall Condition

Report Date

3. Photos of all six sides of the machine.

 Describe the Overall Condition of the Equipment as Received Serviceable

Init	tial I	Mechanical/Electrical	Ō
	5.	Does Shaft Turn Freely?	(N) No
	6.	Does the shaft require T.I.R in Lathe to identify additional repairs?	(No) No
	7.	Does Shaft Have Visible Damage?	(No) No
	8.	Assembled Shaft Runout	Inches
4		Na	
	9.	Assembled Shaft End Play	inches
4		Na	
	10.	Air Gap Variation <10%	na

11. Lead Condition (F) Fail P69

	12.	Lead Length	35 Inches	
•	13.	Does it have Lugs?, If so what is the Stud Size?	(No) No	
•	14.	Lead Numbers	1,2,3	
		2 of each.		
•	15.	Frame Condition	pass	
•	16.	Fan Condition	(F) Fail	P115

3 ea. blades broken.

17. Broken or Missing Components

broken bolt on ode housing needs drill and tap.

P122

Fan blade needs replaced.

Initial Electrical Inspection

0

18. Insulation Resistance/Megger

Megohms

P8

Na

19	9. V	Winding Resistance			
	1	1-2	1-3	2-3	
-	/	Va			
20). F	Perform Surge Test		(F) Fail	
21	l. N	Number of Stator Slots		90	
22	2. 8	Stator Condition		rewind	
23	3. S	Stator Thermistors/Ohms		na	
24	1. S	Stator Overloads/Ohms		na	
Mech	hani	ical Inspection			О
25	5. E	Drive End Bearing Brand		FAG	
26	6. E	Drive End Bearing Number-		NU 222-E-XL-TVP2-C3	
27	7. [Drive End Bearing Qty.		1	
28	3. [Drive End Bearing Type		(Roller) Roller Bearing	
29	Э. [Drive End Lubrication Type		(Grease) Grease Lubricated	
30). [Drive End Bearing Insulation or G	rounding Device?		
-	/	Va			

32.	Drive End Bearing Condition	replace	
33.	Opposite Drive End Bearing Brand	FAG	
34.	Opposite Drive End Bearing Number-	6318-2Z/C3	P99

35.	Opposite Drive End Bearing Qty.	1	
36.	Opposite Drive End Bearing Type	(Ball) Ball Bearing	
37.	Opposite Drive End Lubrication Type	(Grease) Grease Lubricated	
38.	Opposite Drive End Bearing Insulation or Grounding Device?	none	
39.	Opposite Drive End Wavy Washer/Snap-Ring Other Retention Device?	none	
40.	Opposite Drive End Bearing Condition	replace	
41.	Drive End Seal		
42.	Opposite Drive End Seal	VA-90	P123

Rotor Inspection 0

43. Rotor Type/Material

(Squirrel Aluminum) Squirrel **Cage Aluminum Die Cast** РЗ

Growler Test (Pass) Pass 44. 45. Number of Rotor Bars 71 46.

P41 **Rotor Condition** pass

List the Parts needed for the Repair Below

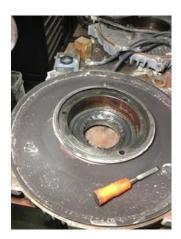
Replace bearings, rewind stator. Stator core requires core test due to damage from rotor drop. Fan blade has 3 broken blades. Re-sleeve both housing fits.

48.	Signature of Technician that Disa	ssembled Motor	Terrence Holland	
/_	-)/ll			
Mecha	nical Fits- Rotor			
49.			0.002 inches	
50.	Rotor Runout			
	Drive End Bearing Fit	Rotor Body	Opposite Drive End Bearing	
51.	Coupling Fit Closest to Bearing H	ousing		
	0 Degrees	90 Degrees	120 Degrees	
-	Na			
52.				
	0 Degrees	60 Degrees	120 Degrees	
	A			
53.				
00.	0 Degrees	60 Degrees	120 Degrees	
	4.3318	4.3317	4.3317	
5 4.	Drive End Bearing Shaft Fit Cond		(P) Pass	
55.	Opposite Drive End Bearing Shaf		(, , , , , , , , , , , , , , , , , , ,	
	0 Degrees	60 Degrees	120 Degrees	
	3.5436	3.5435	3.5434	
5 6.	Opposite Drive End Bearing Shafe	t Fit Condition	(P) Pass	
57.	Shaft Air Seal Fits			
	Drive End Air Seal	Opposite Drive End Air Seal		
-	Na			_
	nical Fits- Bearing Housings			0
58.	Drive End - Endbell Bearing Fit			

120 Degrees

7.7875

Hi-Speed Industrial Service disclaims all warranties, both express and implied, relating to the information, reports, opinions and analysis disclosed to the Customer by Hi-Speed. Hi-Speed shall not be liable for any errors or omissions, or any losses, injury or damages arising from the use of such information, reports, opinions and analysis by the Customer.


60 Degrees

7.8755

0 Degrees

7.8754

Excessive wear and pitting.

60. Opposite Drive End - Endbell Bearing Fit

P30

P52

0 Degrees

60 Degrees

120 Degrees

Excessive pitting and wear.

● 61. Opposite Drive End - Endbell Bearing Fit Condition

(F) Fail

62. Bearing Cap Condition

Drive End Bearing Cap

Opposite Drive End Bearing Cap good

63.	End Bell Air Seal Fits		
	Drive End Air Seal	Opposite Drive End Air Seal	
64.	List Machine Work Needed Below	V	
	Sleeve both housing fits.		
65.	Technician		Terrence Holland
/-	<u></u>		
Poot C	ause of Failure		la la

66. Failure locations

NU, D.E. bearing suffered catastrophic failure from contaminated hardened grease. This caused the rotor to drop onto the stator core and windings resulting in shorted windings and a damaged core. Both housing fits show excessive wear and requires re-sleeve.

67. Root cause of failure

Contaminated hardened grease, resulting in premature DE bearing failure.

Dynamic Balance Report

68. Rotor Weight and Balance Grade

Rotor Weight

Balance Grade

	69.	Initial Balance Readings			
		Drive End	Opposite Drive End		
	70.	Final Balance Readings			
		Drive End	Opposite Drive End		
		Technician			
	wind				
	72.	Core Test Results - Watts loss per			
		Pre-Burnout	Post Burnout		
	70	One Hat Onet Tast			
	73.	Core Hot Spot Test	Dood Down out		
		Pre-Burnout	Post-Burnout		
	74.	Post Rewind Electrical Test- Insula	ation Posistanos		
	74. 75.	Post Rewind Polarization Index	ation Resistance		
		Post Rewind Winding Resistance			
	76.	1-2	1.2	2.2	
		1-2	1-3	2-3	
	77.	Post Rewind Surge Test			
	78.	Post Rewind Hi-Pot			
		Technician			
		nical Fits- Bearing Housings -	Post Repair		
		Drive End - Endbell Bearing Fit Po	-		
		0 Degrees	60 Degrees	120 Degrees	
				0 _ 09.000	
	81.	Opposite Drive End - Endbell Bear	ring Fit Post Repair		
		0 Degrees	60 Degrees	120 Degrees	
		9	9		
	82.	Bearing Cap Condition Post Repa	ir		
		Drive End Bearing Cap	Opposite Drive End Bearing Cap		
	83.	End Bell Air Seal Fits Post Repair			
		Drive End Air Seal	Opposite Drive End Air Seal		
	84.	End Bell Repair Sign-off			
As	sem	•			
		QC Check All Parts for Cleanlines	•		
	86.	Photograph All Major Components	s prior to assembly		
	87.	Final Insulation Resistance Test			
	88.	Assembled Shaft Endplay			
	89.	Assembled Shaft Runout			
	90.	Test Run Voltage			
		Volts	Volts	Volts	
	0.1	T . D . A			
	91.	Test Run Amperage	A	A	
		Amps	Amps	Amps	

Hi-Speed Industrial Service disclaims all warranties, both express and implied, relating to the information, reports, opinions and analysis disclosed to the Customer by Hi-Speed. Hi-Speed shall not be liable for any errors or omissions, or any losses, injury or damages arising from the use of such information, reports, opinions and analysis by the Customer.

92.	Drive End Vibration Readings - In	ches Per Second	
	Horizontal	Vertical	Axial
93.	Opposite Drive End Vibration Rea	dings - Inches Per Second	
	Horizontal	Vertical	Axial
94.	Ambient Temperature - Fahrenhe	it	
95.	Drive End Bearing Temps - Fahre	nheit	
	5 Minutes	10 Minutes	15 Minutes
96.	Opposite Drive End Bearing Temp	os - Fahrenheit	
	5 Minutes	10 Minutes	15 Minutes
97.	Document Final Condition with Pi	ctures after paint	
98.	Final Pics and QC Review		